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In the course of investigation of motion of a material medium, use is often
made of curvilinear coordinates. In such a case, the metric of curved space
is given by the interval

—dst =gy, da* dz®
where ¢,, are the components of the metric tensor.

In the case of motions possessing central symmetry (after some coordinate
transformation, should it be necessary), the usual interval is given in the
form [1] of a Schwarzschild metric

—ds? = — e’c?dt? + ¢ dr? - r2 (0% 4-sin2Bdg?  (v=v (i, r), A=A(t, T))

However, in-a number of gas-dynamics problems, a different metric is
found to be of use, in which the spatial part of the interval is Euclidean

— dst=s — e di? + 2¢'t¥ cdtdr - dr? 4 r?(d02 4+ sin?0do?)  (w=p(t, r))

With thils condltion adopted, the investigation of the motion of gas in
the gravity field becomes considerably simplified. Purely spatial metric
willl still be a‘curve

dit =1 4 e*) dr? + r2? (d0? + sin? 0dg?)
and so will geodeslc trajectories.

The above metrigc can be obtained directly from the Schwarzschild's metric
by putting e“::i——rojr,x==——v, and using the transformation
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cdt =cdty + D (r)dr. This gives

—ds?=— (1 —ro/r) et det 4 2(ry/ 7} cdtdr 4 dr® 4 r? (d6? 4 sin? 8192) (1)
where ro= 26M/c® is the gravitational radius.

This metrlc is found convenient when quantization is to be performed in
a strong Schwarzschild fileld. We should note that neither the above metric
nor the Finkelstein metric possess the singularitles at 7 = ry. When re> r,
the metric (1) becomes space-like.

Let us consider the motion of a representative point in the equatorial

plane (» = #n) of a gravitating body with the metric {1). Using the equation
of a geodesic, we have
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(1) and (2) yileld a well-known equatlon of the orbit of a particle

which has a solution [ 2]

E=—u 2 1—34 (——"—A—G—A—l)
=S U+ B+ At edsintgfecoslo—3a])  (2=7, A="p

where P 1is the parameter and e 1s the eccentricity of the orbit. We
should note that Expressilons

d =4y L T % = — (A)/2 {Ae?sin 2@ — e (1 — 34) sin [@ (1 — 3]}

cdz _eAV2(ifecs[pd—aAlsinlp(t =341+ V AE—-N)+1
ds 1—24¢ +ecos{p(l—34)]}

vield the values of the 4~velocity components of the particle, which are
different from zero.

Also, we can easlly see that time has no singularities. The latter is
important 1in analysis of motion of a particle in the Schwarzschlld field.

In conclusion the author wishes to thank K.P. Staniukovich for formula-
ting the problem and for unceasing interest in this work.
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